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An Iterative Approach to Source Counting and
Localization Using Two Distant Microphones

Lin Wang, Tsz-Kin Hon, Joshua D. Reiss, and Andrea Cavallaro

Abstract—We propose a time difference of arrival (TDOA) es-
timation framework based on time-frequency inter-channel phase
difference (IPD) to count and localize multiple acoustic sources
in a reverberant environment using two distant microphones. The
time-frequency (T-F) processing enables exploitation of the non-
stationarity and sparsity of audio signals, increasing robustness
to multiple sources and ambient noise. For inter-channel phase
difference estimation, we use a cost function, which is equivalent
to the generalized cross correlation with phase transform (GCC)
algorithm and which is robust to spatial aliasing caused by large
inter-microphone distances. To estimate the number of sources, we
further propose an iterative contribution removal (ICR) algorithm
to count and locate the sources using the peaks of the GCC function.
In each iteration, we first use IPD to calculate the GCC function,
whose highest peak is detected as the location of a sound source;
then we detect the T-F bins that are associated with this source
and remove them from the IPD set. The proposed ICR algorithm
successfully solves the GCC peak ambiguities between multiple
sources and multiple reverberant paths.

Index Terms—GCC-PHAT, IPD, microphone array, source
counting, TDOA estimation.

1. INTRODUCTION

D-HOC acoustic sensor networks composed of randomly
distributed wireless microphones or hand-held smart-
phones have been attracting increasing interest due to their flex-
ibility in sensor placement [1]-[5]. Sound source localization is
a fundamental issue in ad-hoc acoustic sensor signal process-
ing, with applications to tracking, signal separation and noise
suppression [6]-[9], among others. An important problem in
source localization is to estimate the number of active sources
(source counting) [10], [11], because many multi-source local-
ization [12], [13] and source separation algorithms [14], [15]
require this information as input. Unlike the conventional regu-
lar structure of microphone arrays, the microphones in an ad-hoc
arrangement can be far apart from each other, and therefore the
inter-microphone delay can be high. Other challenges include
multi-source and multi-path interaction [12], as well as spatial
aliasing at high frequencies [10].
Dual-microphone techniques are crucial in an ad-hoc acous-
tic sensor network, since such a network can be seen as a
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combination of multiple microphone pairs and pairwise pro-
cessing can increase the scalability, and thus also the robustness,
of the network [16]. Counting and localizing multiple simulta-
neously active sources in real environments with only two long-
distance microphones is usually an under-determined problem.
Generally, source counting and localization can be achieved via
time-frequency (T-F) clustering, which exploits the phase infor-
mation of microphone signals, e.g., the linear variation of the
inter-channel phase difference (IPD) with respect to frequency
[12], [13]. The additive ambient noise at microphones will dis-
tort the desired phase information and degrade the source local-
ization accuracy. The overlap of multiple sources contributing
to the same T-F bin can also distort the desired phase infor-
mation. T-F clustering approaches typically require that the ar-
rangement of the microphones should satisfy the space sampling
theorem, i.e., the inter-microphone distance should be smaller
than half the wavelength (e.g., 4 cm for a sampling rate of 8
kHz), so that spatial aliasing will not occur [10]. This require-
ment is difficult to meet in an ad-hoc arrangement, and the long
delay between two microphones may lead to wrapped IPD at
high frequencies [12], [17]. This is the biggest challenge for
T-F approaches. Another class of correlation-based approaches,
e.g., generalized cross-correlation with phase transform (GCC-
PHAT) [18], is robust to the phase wrapping problem. GCC-
PHAT locates the source based on the peak of the generalized
cross-correlation (GCC) function. However, the interaction be-
tween multiple sources and multiple reverberant paths generates
a higher number of GCC peaks than the number of sources. This
ambiguity raises a new challenge for estimating the number of
sources.

In this paper, we propose a new framework for source count-
ing and localization using two microphones, which can deal
with scenarios with far-apart microphones (e.g., 0.15—-6 m). The
two main novelties of the paper are as follows. First, we merge
the concept of the T-F IPD and the concept of GCC-PHAT.
By using T-F weighting based on the SNR and the coherence
measures, the nonstationarity and sparsity of audio signals can
be exploited to improve the robustness to ambient noise and
multiple sources. By using the GCC-PHAT cost function, the
spatial ambiguity caused by a large inter-microphone distance
can be solved. Second, we propose an iterative contribution
removal (ICR) algorithm, which performs source localization
and counting. The ICR algorithm successfully solves the peak
ambiguities between multiple sources and multiple paths by ex-
ploiting the variation of IPD with frequency. In each iteration,
the ICR algorithm detects one source from the GCC function and
subsequently removes the T-F bins associated with this source
for recalculating a new GCC function. In this way, source local-
ization and source counting can be jointly achieved.
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TABLE I
SUMMARY OF SOUND SOURCE LOCALIZATION ALGORITHMS (M : NUMBER OF MICROPHONES; /N : NUMBER OF SOURCES)

Approach Reference | M N Sourc.e Comments
counting

Blind identification Eigen decomposition (71, [19] >2 >1 No High computational cost
ICA [20]-[22]
GCC-PHAT [18], [25] 2 1 Single source only

Angular spectrum SRP, SRP-PHAT [25]1-[28] > -1 No Extension of GCC-PHAT to more microphones
MUSIC, ESPRIT [291-[32] M >N
Joint pitch-location estimation | [33]-[36] Exploiting a harmonic model of source signals
Histogram [313)]7[319%] > 9 Closely spaced microphones only

T-F processing Clustering { 40}:{ 47% - >1 Yes

TF + Angular spectrum Proposed 2 Suitable for far-apart microphones

The paper is organized as follows. Section II overviews re-
lated sound source localization and counting methods in the
literature. Section III formulates the problem. The IPD-based
source localization framework and the ICR source counting al-
gorithm are proposed in Section IV and Section V, respectively.
Performance evaluation is conducted in Section VI and conclu-
sions are drawn in Section VII.

II. RELATED WORKS

Depending on how localization is achieved, source local-
ization may also be referred to as time delay estimation, time
difference of arrival (TDOA) estimation, and direction of arrival
(DOA) estimation. We classify source localization algorithms
into three groups, namely blind identification, angular spectrum,
and T-F processing (Table I).

Blind identification algorithms estimate the acoustic trans-
fer functions between the sources and the microphones, from
which the DOAs of the sources can be easily obtained. Eigen-
decomposition is a popular blind identification approach, which
estimates the transfer function from the covariance matrix of
microphone signals [7], [19]. Recently, independent compo-
nent analysis based system identification has shown promising
results [20]-[22]. One drawback of blind identification is its
computational cost. For instance, the acoustic mixing filter can
be several thousand taps long in reverberant scenarios and to es-
timate the large number of parameters of such a mixing system
simultaneously and blindly can be computationally demanding.

Angular spectrum algorithms build a function of the source
location which is likely to exhibit a high value at the true source
location. Several approaches can be used to build such a func-
tion, e.g., GCC-PHAT, steered response power (SRP) and mul-
tiple signal classification (MUSIC). GCC-PHAT calculates the
correlation function using the inverse Fourier transform of the
cross-power spectral density function multiplied by a proper
weighting function, and localizes the sound source from the
peak of the GCC function [18], [25]. GCC-PHAT is suitable for
far-apart microphones and has shown satisfactory results for a
single source in reverberant but low-noise environments [23],
[24]. A new challenge arises when applying GCC-PHAT to
speech signals from two distant microphones on a short time-
scale (e.g., hundreds of milliseconds). The GCC function may

have ambiguous peaks not only from the TDOA but also from
the fundamental frequency (pitch) of the signal. SRP steers out
beams and localizes high-energy sound sources. SRP-PHAT is
an extension of the two-microphone GCC-PHAT to multiple
pairs of microphones [25]-[28]. MUSIC is a subspace method
for multi-DOA estimation, where the angular spectrum func-
tion is constructed from the steering vector of the candidate
DOA and the eigenvector of the noise subspace [29]. Estima-
tion of signal parameters by rotational invariance techniques
(ESPRIT), another subspace-based algorithm, is more robust to
array imperfections than MUSIC by exploiting the rotational
invariance property in the signal subspace created by two sub-
arrays, which are derived from the original array with a trans-
lation invariant structure [30]. Both MUSIC and ESPRIT were
originally proposed for narrowband radar signals in anechoic
scenarios and when the number of sensors is greater than the
number of sources. The narrowband MUSIC and ESPRIT algo-
rithms can also be extended to wideband applications [31], [32].
Pitch-location joint estimation approaches [33]-[36] assume a
harmonic model of voiced speech and are robust against multi-
source scenarios, since the location information helps improve
pitch estimation for multiple sources while the pitch information
helps distinguish sources coming from close locations.

T-F processing algorithms compute the DOA locally in each
T-F bin and associate these DOAs to each source by means of
a histogram or clustering [10]-[13], [37]-[45]. Several proba-
bility models have been proposed to model the distribution of
multiple DOAs, such as Gaussian mixture model [12], Laplacian
mixture model [12], [13] and Von Mises model [43]. The T-F
approaches have been investigated intensively in recent years
due to their source counting capability and application to under-
determined DOA estimation problems. Processing in the T-F
domain allows one to exploit the nonstationarity and sparsity
of audio signals to improve the robustness in noisy and multi-
source scenarios. One drawback of the existing T-F approaches
is that they are only suitable for closely spaced microphones
since with widely spaced microphones the local DOA estima-
tion becomes ambiguous due to spatial aliasing.

Most multi-source localization approaches need prior knowl-
edge of the number of sources to operate properly. Among the
three groups mentioned above, only the third considers how
to estimate the number of sources. Source counting in T-F is
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achieved by applying information criterion based model order
selection [48], [49] when clustering the T-F bins [12], [39],
[46], [47] or by counting the peaks of the DOA histogram [38].
However, T-F approaches typically require the inter-microphone
distance to be smaller than half the wavelength, an assumption
that is not satisfied in the applications we are interested in with
far-apart microphones. An exception is [11] where spatial alias-
ing is avoided by applying clustering on the signal amplitude
only, but this is not applicable to scenarios where the levels of
the sources are similar. Thus, how to perform source counting
and localization with large-distance microphones is still an open
problem.

III. PROBLEM FORMULATION

Consider M = 2 microphones, whose relative distance is d,
and N physically static sound sources in a reverberant envi-
ronment. /N and the DOAs of sound sources 01, . .., 60y are all
unknown. The sound direction is defined in an anti-clockwise
manner with 90° being the direction perpendicular to the line
connecting the two microphones. The microphone signals are
synchronously sampled. The signal received at the mth micro-
phone is

N
T (n) = Zaﬁlisi (n) +vm(n), m=1,2 (1)

i=1

where n is the time index, @i = [am;(0), . .., ami(L, — 1)]Tis
the L, -length room impulse response between the ith source and
the mth microphone, s;(n) = [s;(n),...,s;(n — L, + 1)]T is
the ith source signal vector and v,, (n) is the uncorrelated en-
vironment noise at the mth microphone. For each impulse re-
sponse a,;, the location of the highest peak, n.,;, denotes the
arrival time of the ¢th source at the mth microphone. The TDOA
of the ¢th source with respect to two microphones is defined as

N2 — Nyj
[s

where f, denotes the sampling rate. TDOA is a key parameter
in sound source localization, since the DOA can be calculated
directly from the TDOA using 7; = w’ where ¢ denotes
the speed of sound.

The goal is to estimate the number of sources, IV, as well as
their TDOASs {7y,...,7x} from the microphone signals. The
main challenges for source counting and localization are envi-
ronment noise, the presence of multiple sources and reverbera-
tion. In addition to this, spatial aliasing can be introduced when
the two microphones are far apart. To address these challenges,
we propose a joint source counting and localization framework,
based on T-F IPD, as described below.

2

T, —

IV. TDOA ESTIMATION

The proposed joint source counting and localization frame-
work consists of three main blocks, namely IPD calculation, T-F
weighting and ICR (see Fig. 1). The first two blocks will be in-
troduced in this section, while the third block will be addressed
in Section V.
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Fig. 1. Block diagram of the proposed joint source counting and local-
ization method. Input: microphone signals z; and z2. We initialize ¢ = 1
and Wg(k,l) =1 Vk,l. Output: the number of sources N and TDOAs
{T],‘.‘,TA}}.

A. IPD-Based TDOA Estimation

We first derive the framework for TDOA estimation based
on T-F IPD in anechoic and noise-free environments and then
extend it to noisy and reverberant scenarios.

In the anechoic and noise-free scenario, the signal received at
the mth microphone can be simplified as

N
Tm (’ﬂ) = Z AmiSi (n - nmi) (3)

i=1
where n,; and a,,; are the transmitting delay and attenuation
from s; to the mth microphone, respectively. Transforming the
microphone signals into the T-F domain using the short-time

Fourier transform (STFT), we can rewrite the microphone signal
for each T-F bin as

N
X (1) = 3 i Si (k, T2 s 4)
i=1
where k and [ are the frequency and frame indices, respectively,
fr represents the frequency at the k-th frequency bin, and .S; is
the STFT of s;.
Assuming that only one source s; is active, the IPD between
two microphones can be expressed as
X 2 (k ’ l)

(k1) = 4m =2nfrT; + 2mpy, (5)
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where 7; is the TDOA of the source, the wrapping factor py
is a frequency-dependent integer and 27pj, represents possible
phase wrapping, and 1) is constrained to be in the range [—, 7]
after mod(2m) operation. If the phase wrapping part can be
neglected, the IPD )y = 27 fi.7; in (5) will vary linearly with
respect to the frequency, f, with a variation slope being 7;. We
call this linear variation a phase variation line (PVL) of 7;. The
wrapping factor

P = 127 fiTilon (6)

is an integer determined jointly by the TDOA 7; and the
frequency fj, where | - |5, retains the integer after mod(27)
operation. The larger the inter-microphone distance and the
higher the frequency, the more wrapping is expected. This phe-
nomenon is called spatial aliasing ambiguity. In theory, when d
is smaller than half the wavelength, no phase wrapping occurs,
ie., 2mp = 0.

When NN sources are active, we assume the audio mixtures
comply with W-disjoint orthogonality, meaning that in each T-F
bin at most one source is dominant [37]. In this case, the IPD
between two microphones can be expressed as

ZXQ (kv l)

"/)m(kvl) = Xl(k l)

=27 fi. T + 27 (7)

where 7y and py; denote TDOA and phase unwrapping of
the dominant source in the (k,1)-th bin, respectively, 7 €
{71,...,7n}, and 9y, is constrained to be in the range [—, 7]
after mod(27) operation.

When no phase wrapping happens (i.e., px; = 0), a clus-
tering algorithm can be applied to IPD to estimate both the
number of sources and their TDOAs [12]. However, for larger
inter-microphone distances with severe phase wrapping (i.e.,
|pki| > 1), the clustering algorithm will fail due to unassociated
frequency-dependent wrapping factors with different sources.

The phase wrapping ambiguity is mainly caused by the extra
term 27py). Since e/ (27 /x T F27mp) — @727 fk T e propose a
new framework which works in the exponential domain to avoid
this ambiguity. Instead of estimating the TDOAs directly from
the IPD, the framework employs an exhaustive search in the
TDOA domain with the cost function defined as

R(r) = Zejwm(/%l)e*j%,fw — ZeJ’?ﬂfk(TkrT) . (8)

k.l k.l

As shown in (8), the wrapping term 27py disappears due to the
exponential operation. Assuming W-disjoint orthogonality with
each source 7 exclusively occupying one set of T-F bins B;, the
cost function can be further written as

= i Z eI 2 fr(mi—7)| 9)
i=1 k,leB;

From (9), R(7) tends to show a peak value at 7 = 7;. Therefore,
(9) can be approximated as a sum of N peaks which originate
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from the NV sources. This is expressed as

N
T) A~ ZB,-(?(T —7)
i=1

where B; is the number of T-F bins in the set B;, which is
practically unknown. The TDOAs and number of sources can
thus be detected from the peaks of R(7).

The IPD-based algorithm is essentially equivalent to the well-
known GCC-PHAT algorithm [18], whose cost function to be
maximized is defined as

(10)

’ kvl —j2n fr T
Race(r) =[5 1% e
| 2(k, 1)
> evnblem it = R(r) - (11)
k
and the TDOA is estimated as
7, = argmax Rgee(T). (12)

As shown in (11), the GCC-PHAT algorithm and the pro-
posed IPD-based algorithm have the same cost function. How-
ever, the two algorithms are derived from different perspectives.
Assuming a single source, GCC-PHAT maximizes the corre-
lation between two microphone signals and introduces phase
weighting to improve the robustness to reverberation. In con-
trast, the proposed algorithm is derived based on the concept of
IPD between two microphone signals and does not require the
single-source assumption. This provides a theoretical grounding
for multi-TDOA estimation. Combining IPD with subsequent
T-F weighting and ICR leads to a solution for multi-source
counting and localization. For simplicity, we refer to the cost
functions in both (8) and (11) as the GCC function.

B. T-F Weighting

The IPD-based algorithm was derived based on the assump-
tion of anechoic, noise-free and W-disjoint orthogonality con-
ditions. These assumptions are rarely met in practice, thus lead-
ing to degraded performance in TDOA estimation and source
counting. We use T-F processing to exploit the nonstationarity
and sparsity of audio signals to address the challenge of am-
bient noise and overlap of multiple sources. We employ two
T-F weighting schemes, namely SNR weighting and coherence
weighting [12], [38], [41], [45]. In this case, the T-F weighted
GCC function becomes

Xk, )Xo (k, 1)
ZWTF 5 R (e )Xo (D)

o2 kT

13)

with

Wre(k, 1) = Wenr (k, 1) Weon (K, 1)

being the product of SNR weight and coherence weight.

We use SNR weighting to improve robustness to ambient
noise. This is performed based on the SNR at an individual T-F
bin, namely local SNR. T-F bins with high local SNRs are less

(14)
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affected by ambient noise and thus are given higher weights in
the GCC function [12]. The local SNR A(k, 1) is calculated as

P, (k,l) P, (k;,l)
—1 —1
e (P (k1) Py, (k1)

where P, (k,1) = |X,,(k,1)]>,m = 1,2, is the power of the
mth microphone signal, while P, (k,[) is the power of the noise
signal. Assuming an ideal case where the noise is stationary and
the first L,, frames of the microphone signal contain only noise,
P, (k1) is time-invariant and can be calculated as

2k, 1) = (15)

Z | X (K, 1)) (16)
To determine the SNR weight we use
1 Ak, D) > 2
Wane (I 1) = 0 = dam (17
0 otherwise

where A1y is a predefined threshold.

To reduce the influence of overlapped sources on the GCC
function, a coherence weighting scheme is employed to detect
and discard the T-F bins with multiple active sources [41]. The
coherence at the (k, [)th bin is defined as

E(X (k, ) X5 (k, l))
| VEX (B DX (5, D) E(X

k, X5 (k1))

(18)
where the expectation E(+) is approximated by averaging among
2C' + 1 consecutive time frames. For instance,

+C

> X (kU)X (k).

I'=1-C
19)
Based on the continuity of speech signals along time, a T-F bin
is believed to be one-source active if its coherence is higher than
a threshold, i.e.,

{ 1
Weon(k, 1) =

1

E(Xi(k, 1) X5 (K, 1)) = 20 + 1

T’(k, l) .> TTH 20)
0 otherwise
where r7y is a predefined threshold.

The choice of Ay and r1y determines the number of T-F bins
that can be reliably employed for the subsequent source counting
and localization, and hence is crucial to the performance of the
whole system in noisy environments. A discussion about the
choice of these parameters will be given in Section V-D.

V. JOINT SOURCE COUNTING AND LOCALIZATION

After T-F weighting, the next step is to count and localize the
sources.

Ideally, the GCC function will be a sequences of peaks (as in
(10)), whose number is equal to the number of sources. However,
the interaction between multiple sources and multiple paths
leads to ambiguities in the interpretation of the peaks of the
GCC function, thus making it difficult to get the number of
sources and their TDOAs. As an example, Fig. 2 depicts the
GCC function for four sources, whose locations are indicated
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Fig.2. Peak ambiguities between multiple sources and multiple paths for four
sources. The locations of the four sources are indicated with red circles. The
inter-microphone distance is 1 m, DRR = 0 dB.

with red circles. The microphone signal is simulated using the
method in Section VI-C, with an inter-microphone distance of
1 m and a direct to reverberation ratio (DRR) of 0 dB. The GCC
function contains more peaks than sources and it is difficult to
distinguish a peak associated with a true source from a spurious
one by solely observing the GCC function.

To demonstrate the peak ambiguity problem, we employ two
simplistic acoustic systems. The first system consists of two mi-
crophones and two sources (s; and s9) in an anechoic scenario,
while the second system consists of two microphones and one
source (s1) in a reverberant scenario where only the first reflec-
tion is considered. The transfer functions of the two systems are,
respectively, expressed as

{zll( ) =ay,s1(n—th)) + ajys2(n — 1) o

zh(n) = ap;s1(n —thy) + ahysz(n — thy)

and
2 (n) = ajys1(n — 1)) + alysi(n — t1y) -
n) = ol 1 (22)
zh(n) = afy s1(n — ty)) + ayysy(n — thy)

| S SRS G R | (R | S ||
where aj, ajq, Gyy, A3, au, a12, a21, a22 represent the at-

tenuation coefficients while ¢}, t1,, t5,, t5,, 1L, #1,,, #1  #IL
represent the transfer delays.

In the second system, s, is replaced by a reflection of s;.
We use the same attenuation coefficients and transfer delays
for the two systems by arbitrarily setting a1; = 1, a;2 = 0.4,
ag1 = 1,a90 =0.4,and t1; = 0,t19 =4, to1 = 1, tyg = 7 (the
superscript (-)!and (-)" are neglected for clarity). For a sampling
rate of 8 kHz, the TDOAs in the first (two-source) system are
71 = —0.125 ms and 7} = —0.375 ms; the TDOA in the second
(one-source) system is 71 = —0.125 ms. We use 10 s long male
and female speech files for the two sources.

Fig. 3 shows the IPDs and GCCs of the two systems. The
GCC plots present multiple peaks. Although the true TDOAS
are contained in these peaks, it is difficult to tell which one is
the true value. However, the TDOA corresponding to the highest
peak is always a true one. In contrast to the ambiguous peaks in
the GCC plots, the IPD plots show a clear difference. In Fig. 3(a)
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Fig. 3. IPD and GCC of an anechoic two-source system and a reverberant
one-source system: (a) IPD and (c) GCC of the two-source system; (b) IPD and
(d) GCC of the one-source system.

the IPD of the first (anechoic and two-source) system can be
easily fitted with two PVLs (one line 27 f7] and one phase-
wrapped line 27 7). In Fig. 3(b) for a reverberant source, only
one curve can be observed, which fluctuates vigorously along
the PVL line of the true TDOA (2 f71).

Exploiting the discrimination ability of the IPD plot, we pro-
pose an ICR algorithm, as shown in Fig. 1, to count and localize
multiple sound sources from the IPD and GCC plots. The basic
idea is to detect a source from the highest peak of the GCC plot,
and from the IPD plot to detect the T-F bins that are associ-
ated with this source. The detected T-F bins are subsequently
removed from the IPD plot so that a new GCC function can be
calculated to detect the next source. In this way, all sources can
be detected iteratively. When designing the algorithm, several
challenges arise: how to detect the T-F bins that are associated
with a target source; how to remove them from the IPD plot;
and how to stop the iteration when all the sources are detected.
These issues will be addressed below.

A. Contribution Removal

In the anechoic scenario, the detection and removal of the T-F
bins associated with a source can be easily conducted since the
IPD of the source fits well with the PVL of its TDOA. Suppose
that the source q is detected as the highest peak of the GCC plot
with its TDOA 7, using (12). The correlation between a T-F
((k,1)th) bin with the source can be measured by the distance

between the IPD ¢ (k,1) = £ §j Ei;; and the PVL of the source.

The distance is expressed as

plk, 1 7)) = |£&/ V0200 (23)

where the exponential operation can cancel out the phase wrap-
ping ambiguity. We assume this T-F bin belongs to the source if
the distance is sufficiently small, i.e.,

(k1) e Qy  Vp(k,l,7,) < pru (24)

where (2, denotes the T-F set that associates with the source
and pry is a threshold. The removal of the detected bins can be
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realized by applying another T-F weight to the GCC function
(13), i.e.,

R(r) =Y Wa(k,)Wag(k, 1)e/V b emr2mfir
k1

(25)

where Wrr is defined in (14) and Wx denotes the weight for
contribution removal, which is calculated by

We(k,1) =0 (k1) €9, (26)

In the reverberant scenario, the detection and removal of the
T-F bins associated with a source becomes more complicated,
because the IPD of the source does not well fit the PVL of its
TDOA. For instance, the IPD of a reverberant source in Fig. 3(b)
spans a wider space than an anechoic source in Fig. 3(a). In
this case, it is difficult to detect all the T-F bins that belong to
the target source. After applying the removal procedure which
is designed for the anechoic scenario, residual T-F bins (of the
target source) still exist and will affect the iteration of the next
round.

To solve this problem, we propose an improved detection and
removal method. In Fig. 3(b) the IPD of a reverberant source is
fluctuating around the true PVL. Based on this observation, the
distance between the (k, [)th bin with the PVL line is modified
as the distance between the bin and a set of parallel lines, which
is defined as

pl(k7l,7-q) — Zej(lf}(kﬁl)—(Qﬂf}{Tqﬂ-(S;)) (27)
where 6{1 denotes the optimal shift (along the IPD axis) from
the original PVL. The optimal parallel line is selected from the
set of parallel lines which can capture the largest number of T-F
bins. This is expressed as

5, = arg minz llej(w(k,l)*(%fﬂq +9)) (28)
5
k.l

and

0y = £0,. (29)

As indicated in (29), two parallel lines, lying above and below
the PVL line, respectively, are used. The optimization problem
in (28) is solved by using an exhaustive search in the range
[—7/3, w/3]. Similarly to (24), the association between the
(K, 1)th T-F bin and the gth source can be determined by

(k1) €Q, Yo'(k1, 7)< pru,

where pry is a predefined threshold (see the discussion in Sec-
tion V-D). The removal is performed by (25).

(30)

B. Stop Criterion

When performing contribution removal iteratively, we em-
ploy a stop criterion so that the number of sources can be re-
liably counted. We note that the GCC function is sparse with
strong peaks when one or several sources are active, and be-
comes noisy, with no evident peaks, when the contribution from
the sources has been mostly removed. Thus, the stop criterion
is mainly based on the sparsity of the GCC function, which can
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be measured by the kurtosis value [53]. In addition to this, the
iteration will stop when all the bins are removed. In summary,
the iteration stops if it reaches a predefined maximum num-
ber Qmax; or if, after contribution removal, the number of the
remaining bins is small enough, i.e.,

If size{Q} < 0.01-size{Q}, STOP=TRUE  (31)

where Q) denotes the complement of the set Q = {Q;,...,Q,};
or if no evident peak is detected in the GCC function. The GCC
function has no evident peak present if its kurtosis value is
sufficiently small, i.e.,

If kurt(R) < Krg, STOP=TRUE (32)

where kurt(-) denotes the kurtosis of the argument, the GCC
function R is given by (25), and Ky is a predefined threshold
(see the discussion in Section V-D). We set () nax = 10 since we
observed that after ten iterations the residual T-F bins usually
do not provide reliable TDOA information and, moreover, by
introducing other stop criteria, the algorithm usually terminates
before ten iterations.
After iteration, we obtain () TDOAs initially denoted as

O=A{n,....70} (33)

C. Source Merging

An advantage of the proposed ICR algorithm is its ability to
detect and remove the residual T-F bins that are not removed in
an iteration. When the iteration is completed, a source could be
repeatedly detected during the iteration. Thus we use a postpro-
cessing scheme to merge closely located sources, based on their
distance and the strength of the peaks.

The distance criterion is expressed as

d sin(Amin)
If |7, —1] < %, T — {7, Ty } (34)
where A, 1S a minimum separation angle, 7, and 7, are two
detected TDOAs in IT, and 7,,, < {7,,, 7, } denotes the merge of

the two, which can be implemented as

_ )™
Tm -
T q

where R, denotes the original GCC function by (25) in the
first iteration. We observed that the correct estimation usually
presents the highest GCC value among all the closely located
candidates and thus in (35) we use the estimate with highest
GCC value as the location of the merged source.

The criterion on the strength of the GCC peak of a detected
source is expressed as

RO(TP) > RO(Tq)

. (35)
otherwise

If R,(r,) < Rru, I« II\7, (36)

where the threshold Rty is set as the median value of RO.

After postprocessing, we obtain N TDOAs denoted as
(37

= {7y )
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TABLE II
PARAMETERS USED BY THE PROPOSED ICR ALGORITHM

Parameter Equation Value
ATH (17) 5dB
C (19) 2
rTH (20) 0.9
prH (30) 0.3
Koy (32) 3
Amin (34) 10°

0.8

0.6

0.4}

0.2}

Speech presence likelihood

0 - - - 1 ! ! LA
-20-15-10-5 0 5 101520
Local SNR [dB]

-20-15-10-5 0 5 101520
Local SNR [dB]

Fig.4. (a) Speech-presence likelihood and (b) averaged phase deviation versus
local SNR.

D. Parameters

The parameters used by the proposed algorithm are summa-
rized in Table II. Under the sampling rate of 8 kHz, we choose
STFT window length of 1024 with an overlap size of 512. When
calculating the GCC function (25), we set the search area as
[—<, 2], with the searching step 10~° s. The selection of the
parameters is justified below.

Regarding coherence weighting in (18)—(20), we choose the
parameters by referring to [27], [41], [45]. We calculate the
coherence over 5 (C' = 2) consecutive frames and use the co-
herence threshold rtg = 0.9 for one-source dominance detec-
tion. Regarding SNR weighting in (15)-(17), we determine
the threshold based on the speech-presence likelihood py(k, 1),
which can be modelled as a function of local SNR A(k, 1) as

(14 (k1)

[52]
pH(k,l):<1+(1+§)e_ = )_1

where £ = 15 dB is the a priori SNR. Fig. 4(a) depicts the
variation of the speech-presence likelihood with respect to the
local SNR. We choose the SNR threshold Aty = 5 dB so that
the speech-presence likelihood is close to 0.8.

Regarding the distance threshold in (30), we aim to capture
the most T-F bins that are associated with a target source with
the smallest distance. For this aim, we investigate how an addi-
tive noise affects the phase of the source signal with a simple
simulation. We use 200 000 samples of complex-valued source
signals plus complex-valued noise signals at different (local)

(38)
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Fig. 5.
400 ms). Each row depicts the results in one (gth) iteration.

SNRs. The real and imaginary parts of the source signal are
both independent Gaussian processes (with mean and variance
being 0 and 1, respectively). The real and imaginary parts of the
noise signal are also independent Gaussian processes, but with
variable amplitudes for different SNRs. For each SNR, we cal-
culate the standard phase deviation of all the samples. Fig. 4(b)
depicts how the phase of the source signal deviates at different
SNRs. In Fig. 4(b) the phase deviation is around 0.3 at the SNR
of 5 dB. We thus choose the distance threshold as prp = 0.3,
in correspondence to Aty = 5 dB.

The kurtosis value in (32) is an important measure to judge
whether the iteration can stop. The GCC function shows peaks
when the sources are active, and becomes noisy when no source
is active. Since the kurtosis of a Gaussian noise is around 3, we
choose Kty = 3 as the stop threshold.

The minimum separation angle is a user-defined threshold that
determines the resolution of the TDOA estimation. We choose
Amin = 10° as suggested in [38].

E. Example

We show an example of applying the proposed ICR algo-
rithm to a two-source scenario simulated using the image-source
method [50] in an enclosure of size 7 m X 9 m x 3 m with a
reverberation time of 400 ms. The two microphones are 0.3 m
apart; the two sources are placed 2 m away at 90° and 30°, with
the TDOAs being 0 and 0.76 ms, respectively. Fig. 5 depicts the
intermediate processing results by the proposed ICR algorithm
(see Fig. 1).

In Fig. 5, each row depicts one (the gth) iteration; the first
column depicts the calculated GCC function and the detected

Intermediate results when applying the ICR algorithm to the two-source scenario (simulated by the image-source method with a reverberation time of

highest peak; the second column depicts the PVL of the gth
source and its shifted PVL, as well as the IPD; the third column
depicts the IPD after removing the T-F bins associated with the
qth source. The kurtosis of the GCC function in each iteration
is also given in the first column.

Due to multiple reflections, the IPDs of the T-F bins associated
with each source vary vigorously and irregularly, but still around
the PVL of the source (see Fig. 5). In the first iteration, the peak
from the first source is dominant in the GCC function. After
removing the T-F bins associated with the first source, the peak
of the second source becomes dominant in the GCC function.
The kurtosis value of the GCC function for ¢ = 2 is even higher
than the one for ¢ = 1. The second and third iterations remove
the T-F bins associated with the second source. The utility of the
shifted PVL can be clearly seen in the third iteration, where the
shifted PVL can capture the residual bins that are not captured by
the original PVL. When the contribution of the second source
is removed gradually, the GCC function becomes noisy and
the kurtosis value becomes smaller. The iteration terminates at
q = 4 since the kurtosis value of the GCC function is smaller
than 3. We obtain three TDOAs: [0, 0.78, 0.78] ms, which are
merged into two estimates: 0 and 0.78 ms.

VI. EXPERIMENTAL RESULTS
A. Algorithms for Comparison

We compare the proposed algorithm (ICR) with another two
source counting algorithms: direct peak counting (DC) and
DEMIX. DC counts the number of sources based on the peaks
of the GCC function. Some principles, which are presented in
[38] for source counting based on a DOA histogram, can also be
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employed for this task, namely the distance between two sources
should be larger than 10° and the peak of a source should be
higher than a threshold, which is defined as a function of pre-
viously detected peaks (cf., (14)—(16) in [38]). DEMIX uses
a clustering algorithm applied to signal amplitude for source
counting [11]. After clustering, the source localization in each
cluster can be calculated with a GCC-like function. We use the
source code provided by Arberet et al. [11].

The comparison is performed in acoustic scenarios simulated
with artificially generated room impulse responses (Sections VI-
C and VI-D), image-source method based room impulse re-
sponses (Section VI-E), and real-recorded acoustic impulse re-
sponses (Section VI-F).

B. Evaluation Measures

Since there are multiple sources and multiple estimates, it is
difficult to associate each estimate with a correct value for cal-
culating the estimation error. We thus evaluate the localization
performance under two aspects. First, we count the number of
correctly detected sources and evaluate the source counting per-
formance in terms of recall rate, precision rate and F-score. We
assume that a TDOA estimation is correct if its corresponding
DOA is close enough to a true source (i.e., the DOA difference
is smaller than 10°, the minimum separation angle in (34)). Sec-
ond, for the correctly detected sources, we evaluate the localiza-
tion accuracy with the TDOA estimation error. These measures
are defined as below.

Recall rate and precision rate evaluate the performance in
terms of miss-detections and false alarms, respectively, while
F-score evaluates the source counting performance globally.
Suppose the true number of sources is N, and the estimated
number of sources is N with the number of correct ones being
NC. The three measure are, respectively, defined as

N c P o N, c Rate : Rrate
AT rate — T <7 .
N N Prae + Rrae

The global measure F-score can be interpreted as the harmonic
average of the precision and recall, reaching its best value at 1
and worst at 0.

For each correctly detected source, the TDOA estimation
error is defined as

Rrate = Hcore =2 (39)

(40)

Td = |To — T

where 7, and 7. denote the true and estimated TDOAs,
respectively.

C. Simulation Environment for Artificial Impulse Response

Four inter-microphone distances are used: {0.3, 1, 3,6} m. For
each inter-microphone distance, seven source directions from 0°
to 180°, with an interval of 30°, are considered. Speech files (six
males and six females) are used for the experiment, each 10 s
long and sampling rate 8 kHz.

The impulse response between the jth source and the ith
microphone is modelled as

hij(n) = h?j (n) + hi;(n) 41)
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TABLE III
NUMBER OF SOURCES VERSUS DOA IN THE SIMULATION

Number of Sources DOA [°]

60, 120
60, 90, 120
30, 60, 120, 150
30, 60, 90, 120, 150
0, 30, 60, 120, 150, 180

AN AW

where h¢ and h' denote the direct and reverberant part, respec-
tively [11]. The direct part is modelled as a delayed impulse
as

h;(n) = 8(n —nij) 42)
with
nij = no
N2j = No + 7d Coi(ej)fs , “

where ny = 100 ms denotes a constant reference time point for
all the sources. The reverberant part is modelled as an indepen-
dent Gaussian noise process h; (n) ~ N'(0, 0% (n — n;; —n1))
with

107" 52
o’ (n) = { n

0 otherwise

O0<n—(n;+m)<T,fs
( J 1) f (44)

with « = 6/T,., so as to have an exponential decrease of —60 dB
at the end of the reverberation part, and with n; = 20 ms being
the distance between the direct and the reverberant part and 7'
= 150 ms being the length of the reverberation. The parameter
0% controls the DRR which is defined as

d(n))2
DRR = 10log;, ZZ:H((];LT((TL))))Q

In this way, all the sound sources are modelled as plane waves
with the reverberation density (DRR) controlled by o%. We
consider seven different DRRs increasing from —10 to 20 dB,
with an interval of 5 dB.

The number of sources varies from 2 to 6. The directions of
the sources are selected based on the number of sources. Ta-
ble IIT lists the relationship between the two terms. For each
geometrical configuration we implement 15 instances. In each
instance, the speech is randomly selected from the 12 files while
the reverberant part h" of the impulse response is generated in-
dependently. The microphone signals are generated via convo-
lution between the speech files and the corresponding impulse
responses.

Speech-shaped Gaussian noise, computed by filtering Gaus-
sian noise through an FIR filter whose frequency response
matches the long-term spectrum of speech [51], is added at
different SNRs (from —10 to 30 dB).

(45)
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Fig. 6. Performance (F-score) of the ICR algorithm versus Ay for different

SNRs from —10 to 10 dB. The inter-microphone distance is 1 m, 4 sources,
DRR = 20dB, pryg = 0.3.

D. Results From Artificial Room Impulse Response

In this experiment we first examine how the performance
of the proposed ICR algorithm varies with the two parame-
ters Arg and pry. Then we compare the performance of the
three algorithms in conditions with varying numbers of sources
N, inter-microphone distances d, reverberation densities (DRR)
and noise intensities (SNR).

1) Influence of Ary: Under the condition d = 1 m, N =4,
DRR = 20 dB, SNRs increasing from —10 to 10 dB, with an
interval of 5 dB, and prp = 0.3, we examine how the perfor-
mance of the ICR algorithm varies when Ay increases from 0
to 12 dB, with an interval of 1 dB. Fig. 6 depicts the F-scores
obtained by the ICR algorithm. The performance of the ICR
algorithm degrades with the increase of the noise level. In high
SNRs (5 and 10 dB), the F-score keeps almost constant for var-
ious Ary. For low SNRs (=10, —5 and 0 dB) and Aty > 2 dB,
the F-score tends to rise with increasing Aty until reaching a
peak value, and then drops quickly with increasing Ary. For
SNRs —5 and —10 dB the peak is reached when Aty = 4 dB,
while for SNR 0 dB the peak is reached when Arpy = 8 dB. The
observations demonstrate that T-F weighting can improve the
performance of the ICR algorithm in noisy environments. The
observations confirm our choice Apy = 5 dB (see Table II).

2) Influence of pry: Under the condition d = 1 m, N = 4,
SNR = 30 dB, two DRRs (0 and 20 dB), and Aty = 5 dB, we
examine how the performance of the ICR algorithm varies when
pru increases from 0.1 to 0.9, with an interval of 0.1. We use
two versions of the ICR algorithm, one with shifted PVL (see
cf., Eq. (27)) and one without shifting (see cf. Eq. (23)). We
refer to them as ICR-shift and ICR-noshift, respectively. Fig. 7
depicts the F-scores obtained by these two ICR algorithms.
In general, both algorithms perform better in low reverberation
than in high reverberation. In low reverberation (DRR = 20 dB),
ICR-shift and ICR-noshift perform similarly for all pry: they
achieve almost perfect results when prp; < 0.5 and their perfor-
mance degrades quickly with increasing prig when pr > 0.5.
In high reverberation (DRR = 0 dB), ICR-shift is less sensitive
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Fig. 8.  Performance (F-score) comparison of the source counting algorithms
for different numbers of sources N and DRRs. The inter-microphone distance
is 1 m, SNR = 30 dB.

to the value of pry than ICR-noshift, whose performance im-
proves quickly with pry and peaks at pryp = 0.6. The optimal
pru value for ICR-noshift depends on the reverberation density
greatly. In contrast, with shifting processing, ICR-shift performs
more robustly against reverberation and obtain a high F-score
at prg = 0.4 for both DRRs. This value is close to our choice
pru = 0.3 (see Table II).

3) Performance Comparison: At first, we compare the per-
formance of the three algorithms (ICR, DC, DEMIX) for dif-
ferent DRRs (increasing from —10 to 20 dB, with an interval
of 5 dB) and numbers of sources (N € [3,6]), when d =1 m
and SNR = 30 dB. Fig. 8 shows the resulting F-scores, which
increase with DRR. DEMIX performs the worst. ICR performs
much better than the other two algorithms when DRR >0 dB.
ICR achieves almost perfect results for all NV when DRR > 5 dB.
All algorithms perform poorly in high reverberation with
DRR < —5 dB, achieving F-scores smaller than 0.5. We as-
sume that the algorithms fail in this case when their F-scores are
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Fig. 10. Performance (F-score) comparison of the source counting algo-
rithms for different numbers of sources N and inter-microphone distances.
DRR = 10 dB, SNR = 10 dB.

low enough (e.g., <0.5). In high reverberation, the reverberant
part may be stronger than the direct part. As a result, the highest
peak of the GCC function may not denote the true TDOA of the
source, leading to the failure of ICR. The poor performance of
DEMIX is due to its clustering operation solely on the signal
amplitude. In our simulation, all the sources have similar am-
plitude and thus can not be distinguished using this information
alone.

Next, we compare the performance of the three algorithms
for different SNRs (increasing from —10 to 30 dB, with an
interval of 10 dB) and numbers of sources (N € [3, 6]), when
d = 1 mand DRR = 20 dB. Fig. 9 shows the resulting F-scores:
the performance of all algorithms improves with SNR. ICR
performs the best and DEMIX performs the worst. When SNR
> 10 dB, ICR performs almost perfectly for all V.

Moreover, we compare the performance of the three
algorithms for different inter-microphone distances (d €
{0.15,0.3,0.6, 1, 3, 6} m) and numbers of sources (N € [3, 6]),
when DRR = 10 dB and SNR = 10 dB. Fig. 10 shows the
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Fig. 11.  Performance (recall, precision, F-score and TDOA estimation error)

comparison of the source counting algorithms for different numbers of sources.
The inter-microphone distance is 1 m, DRR = 10 dB, SNR = 10 dB.

resulting F-scores. DEMIX fails in almost all testing cases, and
ICR performs better than DC in most testing cases. The per-
formance of ICR and DC degrades when the inter-microphone
distance decreases, which leads to smaller TDOA difference
between spatially separated sources. When d > 0.6 m, ICR
achieves almost perfect results for all N.

Finally, we compare the performance in terms of recall rate,
precision rate, F-score and localization accuracy of the three
algorithms for different numbers of sources (N € [2, 6]), when
d =1 m, DRR = 10 dB and SNR = 10 dB (see Fig. 11). ICR
and DC achieve a recall rate close to 1 for all testing cases. ICR
achieves a precision rate close to 1 for all testing cases, while
DC achieves a precision rate which decreases with increasing N.
Unlike ICR, DC tends to overestimates the number of sources.
Although DEMIX achieves a precision rate close to 1 in all
testing cases, its recall rate drops quickly when increasing V.
The F-score shows the rank of the global performance as ICR >
DC > DEMIX. For localization accuracy, all three algorithms
achieve a TDOA estimation error below 10~° s for correctly
detected sources. ICR and DC performs the same for localization
accuracy, with the TDOA estimation error increasing with V.

E. Results From Image-Source Based Room Impulse Response

In addition to artificial room impulse responses, we also use
the image-source method [50] to simulate the room impulse
response in an enclosure of size 7 m X 9 m x 3 m. The mi-
crophones are placed in the center of the enclosure and 1 m
apart. The sources are placed d,s = 2 m and 4 m away from the
middle of the microphone pair. Seven source directions from 0°
to 180°, with an interval of 30°, are considered. All the micro-
phones and sources are placed 1.3 m high. The same speech files
and configuration as for the artificial impulse response are used.
We consider three scenarios with different reverberation times
RTg¢ and microphone-source distance dy,: (a) RTgy = 100 ms,
dms = 2 m; (b) RTgg = 400 ms, d,s = 2 m; (c) RTgy = 400 ms,
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ror) comparison of the source counting algorithms for different numbers of
sources simulated with the image-source method. Three scenarios are considered
with different reverberation times RTg( and microphone-source distance dps:
(a) RTgp = 100 ms, dps = 2 m; (b) RTgg = 400 ms, dpns = 2 m; (¢c) RTgg =
400 ms, dms = 4 m. The inter-microphone distance is 1 m.

dms = 4 m. The DRRSs in the three scenarios are about 6.3, —2.5
and —7.0 dB, respectively.

Fig. 12 shows the four measures obtained by the considered
algorithms in different scenarios. For scenario (a), the global
performance in terms of F-score can be ranked as ICR > DC
> DEMIX. ICR performs well in terms of both recall rate and
precision rate; DC performs well in terms of recall rate, but
poorly in terms of precision rate; DEMIX performs well in
terms of precision rate, but poorly in terms of recall rate. For
scenario (b), the global performance in terms of F-score can
still be ranked as ICR > DC > DEMIX. The performance of all
algorithms degrades as the reverberation time rises to 400 ms.
ICR achieves a precision rate close to 1 in all testing cases,
but its recall rate decreases evidently when increasing N. The
recall rate of DC is close to 1 when N < 4, and decreases with
increasing N when N > 4. In comparison to ICR, DC achieves
a higher recall rate, but much lower precision rate. For sce-
nario (c), the performance of three algorithms further degrades
as dp, is increased to 4 m. ICR degrades more significantly
than the other two algorithms, with its recall rate below 0.5 and
precision rate below 1 in most cases. Consequently, ICR outper-
forms DC in terms of F-score when N < 4, but performs worse
than DC when NV > 5. DEMIX still performs the worst. For lo-
calization accuracy, the three algorithms obtain similar TDOA
errors, around 107 s, for correctly detected sources in all testing
cases.
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Fig. 13. Geometrical configuration for real recording. The locations of the
microphones (mo—m3 ) and sources (s1—s5 ) are denoted by circles and crosses,
respectively.

TABLE IV
NUMBER OF SOURCES VERSUS DOA IN THE REAL ENVIRONMENT

Number of Sources Location

2 52,83

3 sl, s3, 85

4 sl, s2, 54,85
5 sl, 52,83, 4, s5

F. Results With Data Recorded in a Real Environment

The data are recorded in a quiet public square of about 20 m
x 20 m, with strong reflections from nearby buildings. The posi-
tions of four microphones and five sources are shown in Fig. 13.
All the sources and microphones are at the same height of 1.5 m.
We measure the impulse responses from the sources to the mi-
crophones and convolve the impulse responses with speech files
to generate the testing data. The DRRs at the microphones are
around 5 dB. The same speech files from the simulation are
used. We use two microphone pairs, (ml, m2) and (m0, m3),
which are about 1.4 m and 3.5 m apart, respectively. For each
pair of microphones, five source positions (s1—s5) are consid-
ered. The number of sources varies from 2 to 5. The locations
of the sources are selected based on the number of sources, as
listed in Table IV. For each geometrical configuration we real-
ize 20 instances, where in each instance the speech is randomly
selected from the 12 files.

The experimental results are shown in Fig. 14. ICR performs
better than DC and DEMIX for both microphone pairs. The
performance of ICR and DC degrades quickly as the number
of sources increases. There are mainly two reasons for that.
First, the linear phase variation is distorted more severely in
real environments whose measured acoustic impulse response
consists of strong early reflections. Second, the amplitudes of
the sources are different, depending on their distances to the
microphones. In some cases, the source counting performance
may degrade if some sources dominate in the mixtures. In con-
trast, DEMIX may benefit from the different amplitudes of the
sources, by applying clustering to the signal amplitude. For in-
stance, DEMIX achieves a higher F-score for (mg, mg) than for
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Fig. 14.  Performance (F-score) comparison of the source counting algorithms
in real environments; (m1, my) are 1.4 m apart while (mg, m3) are 3.5 m apart.

(m1, m2), where the former pair is farther apart. For (mg, m3),
DEMIX even outperforms DC in some cases.

G. Computational Complexity

Considering Fig. 1, the computational complexity of the first
two blocks (IPD calculation and T-F weighting) of the proposed
ICR algorithm remains almost constant in different acoustic en-
vironments. The third block ICR involves GCC function calcula-
tion, peak detection and contribution removal for each iteration.
The computational complexity in each iteration is dominated
by the GCC function calculation, which depends on the size of
the TDOA search space and the number of valid T-F bins. The
number of iterations and the number of valid T-F bins in each
iteration depend on the acoustic environment (e.g., the number
of sources and reverberation density). The DC algorithm con-
sists of three blocks: IPD calculation, T-F weighting and GCC
peak counting. The first two blocks are the same as the ones
in the proposed algorithm. The GCC peak counting block only
calculates the GCC function once.

We run Matlab code for ICR, DC and DEMIX on an Intel
CPU i7 at 3.2 GHz with 16 GB RAM, using the simulated data
in Section VI-D. The data length is 10 s with sampling rate
8 kHz. We set SNR = 30 dB and DRR = 20 dB, and try varying
number of sources (N € [2,6]). Fig. 15(a) depicts the compu-
tation time of the considered algorithms, which can be ranked
as DEMIX < DC < ICR. The computation time of DEMIX
remains almost constant for various N. The computation time
of DC decreases with increasing N because, as the number of
sources is increased, fewer T-F bins are detected to be one-
source active and are taken into account in the GCC function.
Fig. 15(b) depicts the computation time of the blocks of the ICR
algorithm: IPD + TF-weighting and ICR. The computation time
of the IPD + TF-weighting block remains almost constant with
N. The computation time of ICR is much higher than IPD +
TF-weighting, and does not vary regularly with NV.

VII. CONCLUSION

We proposed an IPD-based joint source counting and lo-
calization scheme for two distant-microphones. The proposed
algorithm works in the T-F domain to exploit the nonstationarity
and sparsity of audio signals. To count the number of sources
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Fig. 15.  Computation time of the considered algorithms for 10 s data with
varying number of sources. (a) Three algorithms: ICR, DC and DEMIX. (b)
Constituent blocks of the ICR algorithm: IPD + TF-weighting and ICR.

from the multiple peaks of the GCC function, we proposed
an ICR algorithm that uses GCC and IPD iteratively to detect
and remove the T-F bins associated with each source from the
IPD plot. Experiments in both simulated and real environments
confirmed the effectiveness of the proposed method. Using T-F
weighting, the robustness of the proposed algorithm to ambient
noise was improved.

The proposed algorithm is suitable for different inter-
microphone distances over 0.15 m. In low reverberation, the
algorithm can robustly detect up to six sources. In high reverber-
ation (e.g., DRR < 0), the performance degrades significantly,
especially when the reverberant part is stronger than the direct
part. For the same reason, the performance of the algorithm de-
grades in real environments with strong early reflections. How-
ever, in most cases, the algorithm clearly outperforms other
existing approaches.

Since the proposed ICR algorithm only considers the phase
information, an interesting future work is to incorporate ampli-
tude information, just as DEMIX does. Instead of hard thresh-
olding, a soft thresholding scheme could also be employed for
SNR and coherence weighting. The proposed algorithm only
considers static sources with a batch processing and could be
extended to moving sources by introducing a frame-by-frame
processing scheme and a tracker [54].
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